Multi-taxon dynamics of an ecological succession after

disturbance: Study of a quarry network

Vincent Hortegat, Aude Ernoult, Pascaline Le Gouar, Marion Parisot, Christian Kerbiriou

SFE² Lyon October 2024

The benefits of multi-site monitoring :

Indicator

Each site will follow a particular trajectory, but is it possible to identify general patterns?

Time

 \rightarrow 38 quarries; 1707 monitoring point realised; 90691 observation

Introduction	Methods	Impact of disturbance	Direct or indirect ?	Conclusion
Life cyc Part 1 : Effect of a disturbance Before exploit		ge		
General linear mixed m	During exploitation odelling			
Categorical time var	able 0-5 years after rehabilitation			
[Community structure indice] ~ Life_cy local habitat variables + day -	+ 6-10 years after rehabilitation			
weather variables + year + random	effect. 11-15 years after rehabilitation			
	16-20 years after rehabilitation			
	+20 years after rehabilitation			9

Differences between taxa \rightarrow Differences in habitat affinity

Differences between metrics \rightarrow Defining a rehabilitation success is complex.

Impact of disturbance Introduction Methods **Direct or indirect ?** Richness Species composition Pielou Evenness Index CSI **G**0.5 С Ε Α BCDE ABBD ≞ CE в в **F** _= EF CD BC в DE EBC DE T в вс BC в Α Α Α Α 0.4 PIELOU EVENNESS INDE)

в

AB

в в

AB

A

BC

С

BC

BC

в

D

LOU EVENNESS

Α

X

-

RICHNESS

В

в

Α

Ŧ

No always a negative impact of quarrying on our metrics \rightarrow Quarries fit into landscapes that are already under heavy pressure The start of exploitation \rightarrow New pioneer habitat

S

в в в

в AB

Α

Conclusion

С

D

CD

ABC

AB

AB

Axis 1

H

4Xis 1

D

BCD

Introduction

Methods

Impact of disturbance

Direct or indirect ?

Conclusion

Long time changes even years after rehabilitation both positive or negativ

Summary table

	Richness		Pielou evenness index		Specialisation		Species composition	
	Direct	Indirect	Direct	Indirect	Direct	Indirect	Direct	Indirect
0-10		+		+		+		-
+10	-	+	+		-		+	
0-10				-				
+10	+		+	-				
0-10						+		-
+10						+	+	

Indirect

Forest

- The differences in responses between taxa show the importance of clearly defining rehabilitation targets.
- In the first few years after rehabilitation, ecological engineering can modify habitats. (Size of water body, bank slope, number of grassland patch...)
- In a second phase, management efforts could help to promote and/or maintain biotic conditions (e.g. open-land, tree microhabitats...).

What are the post-exploitation uses?

There is a need to take long-term effects of rehabilitation into account and not only the first few years

Thank you !

UNION NATIONALE DES PRODUCTEURS DE GRANULATS

MINÉRAUX **INDUSTRIELS** -FRANCE

©xulescu q

